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Abstract

Drawing from discussions at the inaugural DMLR, workshop at ICML 2023 and meetings
prior, in this report we outline the relevance of community engagement and infrastructure
development for the creation of next-generation public datasets that will advance machine
learning science. We chart a path forward as a collective effort to sustain the creation
and maintenance of these datasets and methods towards positive scientific, societal and
business impact.
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1 Data Ambivalence in Machine Learning

Why state the obvious? Do we really need to emphasize some machine learning (ML) re-
search as data-centric? Hasn’t ML science, at its core, always been just that? After all,
designing algorithms that extract models from data is machine learning’s summum bonum.
In the pursuit of this goal we often oscillate between two dominant phases: (i) design al-
gorithm and throw data at it, (ii) go back to data (and its intermediate representations)
to design better algorithm. This feedback loop informs the ambivalence towards data that
many of us will encounter in machine learning practice: on the one hand, we want the
algorithm to extract a model from data automatically; on the other hand, we often need
to analyze the data and model manually to build good algorithms. Through the lens of
this oscillation, data-centric machine learning research (DMLR) can broadly be described
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Figure 1: A timeline of some inflection points in the development of data-centric ideas.

as infrastructure, methods and communities revolving around phase (ii). In this editorial
we outline key coordinates and objectives of DMLR, contextualize its origins, and summa-
rize activities that took place at the inaugural DMLR workshop. And these lines are an
invitation, a call on you, the reader, to join us in shaping the DMLR future. Be it as open
source contributor, community organizer, researcher or reviewer, your ideas and efforts are
needed to maintain and shape the DMLR ecosystem further.

2 Past: Data-Centricity Over Time

Historically, the ambivalence towards data has manifested in different ways. In the early
1990s, Wilson, Garris and Wilkinson [1-4] distributed “Handwriting Sampling Forms” at
the National Institute of Standards and Technology (NIST), digitizing the resulting data
into the raw ingredients that were later turned into the now infamous machine learning
staple MNIST. But as of October 4, 2023, their original publications have less than 150
citations combined. In comparison, the seminal LeNet paper by [5], which is often used as
stand-in reference for the MNIST dataset, sits at 60,000 citations today.'.

This is not to open artificial fault lines a la “data people” versus “model people”. But
one can wonder what such artifacts reveal about the incentives in machine learning and
how conducive they are to machine learning progress. Or whether, as [7] suggest, it slows
progress because “everyone wants to do the model work, not the data work”. Jumping to
today, there are active and encouraging efforts in the community to counter this imbalance,
most prominently the Datasets and Benchmark Track at Neural Information Processing
System (NeurIPS) that was conceived for the first time in 2021 by Joaquin Vanschoren,

1. As an aside, LeCun et al. |5] themselves did not cite the NIST prior works [1-4]. Notably, Yadav and
Bottou [6] later revisited the history of MNIST.
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Serena Yeung, Maria Xenochristou. We have to emphasize that not all data work goes
under-appreciated. One must only look at ImageNet [8] or CIFAR [9] for great success
stories.

Around the same time as MNIST, the concept of data-centricity started to appear
literally in early works by [10] and others. It was likely discussed in the systems and
database circles long before the idea became an increasingly growing focus of research in
the core machine learning community. The connection to systems persists to this day,
evident in venues such as MLSys? or the DEEM workshops®, due the high importance
of optimized infrastructure to orchestrate and execute data transformation and machine
learning workloads. Success stories can be found in frameworks to build and store models
such as Torch [11], Theano [12]|, Caffe [13], TensorFlow [14], JAX [15] or PyTorch [16].
Sometimes these frameworks also led to optimized data formats, such as TensorFlow’s
TFRecord. Additionally, platforms like Kaggle, HuggingFace or OpenML have emerged as
de-facto community data hubs and standardized data loading infrastructure. A new wave of
emerging open-source projects such as Lance? aim to address existing gaps with respect to
data loading needs. However, despite these advances, challenges regarding the compatibility,
mutability, and collaborability of datasets persist. Encouragingly, new initiatives, such as
’Croissant’®, take stabs at the Babylonian tower of data formats, uniting key stakeholders
in an effort to streamline data-centric machine learning infrastructure. Similarly, DataPerf
[17] is a recent community-led benchmark suite for evaluating ML datasets and data-centric
algorithms, enabling the ML community to iterate on datasets, instead of just architectures.

Alongside developments in infrastructure, over time we have also witnessed critical ad-
vances in the way datasets are collected, curated and maintained. From the beginnings of
modern statistical science [18; 19|, active learning, a set of methods concerned with data
curation, has planted its roots firmly in the machine learning and statistical learning lit-
erature [20-26]. The next generation of machine learning datasets are characterized by
dense metadata annotation [27-29], collaborative refinement [30-33], user preference and
human feedback [34], and evolution over time [35-37|, similar to the way we treat code
for computer programs already today. Data provenance and ownership are also receiving
increasing consideration by groups such as the “Data Trusts” initiative [38] and others.
Our goal is to support the growth of the DMLR ecosystem into a strong community with
effective infrastructure that will advance machine learning science through next generation
datasets. These datasets shall serve as a bridge to connect fundamental problems (such as
food insecurity and climate impact) with fundamental ML research by providing the right
datasets for the right problems.

3 Present: Convening the Community at ICML 2023

In order to charge this effort, the data-centric ML community came together on July 29,
2023, in Honolulu, Hawaii, for the inaugural DMLR workshop at the International Confer-
ence on Machine Learning (ICML) 2023. The DMLR workshop was a point of convergence

. https://mlsys.org/

. http://deem-workshop.org/

. https://github.com/lancedb/lance

. https://github.com/mlcommons/croissant
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Figure 2: Themes and contributions from the community at the DMLR ICML 2023 work-
shop. Top left: LDA of accepted paper abstracts with n_components = 5. 2-d UMAP of
LDA results which are 5-d corresponding to 5 components. Each dot represents an abstract,
color coded by the most dominant topic identified by LDA. The topics identified by LDA are
displayed alongside as top20 word clouds. Bottom left: A sample of the geographic coor-
dinates of the institutions where authors of accepted works are based. It includes only those
locations where the geocode API returns latitude and longitude information for fuzzy search
on affiliation names (360 of 495 affiliations returned coordinates, note that not all 495 affil-
iations are unique). Right: Topics highlighted in the invited talk including prompt-based
ML development (Andrew Ng), the DMLR ecosystem (Peter Mattson), reality-centric Al
(Mihaela van der Schaar), bias in vision data (Olga Russakovsky and Vikram Ramaswamy),
history of distribution shifts dating back to NeurIPS 2006 (Masashi Sugiyama), the Al re-
search agent (Isabelle Guyon), nuances of data quality (Dina Machuve), the DMLR Journal
(Ce Zhang) and data-centric LLMs (panel). Links to the full videos and slides of talks are
available in Appendix C.

for previous activities including the Asilomar Datasets 2030 retreat, the Dataperf initia-
tive®, the NeurIPS 2021 data-centric Al workshop”, the LAION community® and others.
Invited speakers, panelists, poster presenters and attendees deliberated on the current state
of data-centric machine learning and how we can advance the community and infrastructure
towards the next generation of public machine learning datasets (see Figure 2 for a brief
overview).

Community engagement Andrew Ng concluded his keynote with open questions aimed
at fostering further research and development in data-centric Al workflows. Isabelle Guyon
proposed a peer-reviewed journal contributed to by Al-agents, aiming to foster scholarly
community engagement. Dina Machuve discussed the role of community in data collection
for agriculture in East Africa. Olga Rusnaskovsky and Vikram V. Ramaswamy addressed
social bias in machine learning, calling for community action. The panel expressed substan-
tial enthusiasm for the DMLR Journal, indicating a strong community interest in advancing

6. https://wuw.dataperf.org/
7. https://datacentricai.org/neurips21/
8. https://laion.ai/


https://www.dataperf.org/
https://datacentricai.org/neurips21/
https://laion.ai/

DMLR: PAsT, PRESENT AND FUTURE

the field. Paper authors highlighted diverse challenges in community standards ranging from
risk classification in driver telematics, the role of synthetic data in the scientific community,
to the nuances of deep learning in neuroimaging and beyond.

Infrastructure Workshop contributions also illuminated the critical role of infrastruc-
ture in advancing data-centric machine learning. Andrew Ng emphasized the importance
of rapid iteration cycles, facilitated by advancements in both theory and tools. Mihaela
van der Schaar introduced tools like Data-1Q [39] for better data characterization. Pe-
ter Mattson and Praveen Paritosh discussed Croissant”, a standardized dataset format, and
DataPerf [17], an engine for refining datasets. Masashi Sugiyama added depth by discussing
the complexities of machine learning models operating under distribution shifts. The panel,
consisting of Ludwig Schmidt, Megan Ansdell, Nathan Lambert, and Sang Michael Xie, fur-
ther emphasized that the development of systematic methods for constructing Al datasets
is less advanced compared to model development but noted that tools and infrastructure
are catching up. Poster presenters highlighted different aspects related to infrastructure
such as quality control and streaming of distributed data.

Datasets The workshop participants also delved into the future of datasets in machine
learning. Andrew Ng highlighted the growing relevance of small datasets and the practical-
ity of few-shot learning techniques. Mihaela van der Schaar advocated for Reality-Centric
AT [40]. Isabelle Guyon introduced AutoML+, a holistic system that includes data search,
task definition, and preparation. Dina Machuve discussed the critical role of data in East
African agriculture. The panel emphasized that data holds a central role in driving Al for-
ward and highlighted the need for next-gen datasets to be more systematically constructed.
Several papers also underscored the challenges and solutions in active learning, focusing on
topics such as minimizing annotation cost and acquiring high-quality data for training dis-
criminative models. Links to the full videos and slides of talks are available in Appendix C.

4 Future: Growing the DMLR Ecosystem

The field of machine learning is undergoing a profound transformation. While the past was
characterized by the pursuit of innovative algorithms and architectures, the present and fu-
ture pose growing data-centric questions. As large models become the norm and real-world
efficacy becomes paramount, the emphasis is shifting towards the entire data lifecycle, from
collection over storage and transformation to integration of results into other systems [41].
The importance of addressing societal issues through data further underscores this shift.

The role of the community in shaping the future of data-centric ML cannot be overstated.
The recent DMLR workshop at ICML 2023 served as an inaugural meeting, igniting a spark
for what is to come. A collective effort is required to create, enhance, and maintain pub-
lic datasets. This involves establishing clear licensing protocols, technological standards,
and fostering a culture of collaboration and shared, equitable ownership [42]. Interested
contributors can already find several entry points, including

9. https://github.com/mlcommons/croissant
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Figure 3: An overview of the DMLR ecosystem pillars and community projects.

e DMLR workshops or tracks at the main machine learning conferences such as NeurIPS Datasets and
Benchmarks
https://dmlr.ai/

e DMLR journal as an author, editor, reviewer
https://data.mlr.press/

e Data provenance and governance initiatives such as
https://datatrusts.uk/ |38|
https://dataprovenance.org/ |42

e Socials and informal research retreats such as Asilomar Datasets 2030

e Open source data-centric libraries such as
https://github.com/vanderschaarlab/datagnosis

An infrastructure that supports the collaborative creation and enhancement of datasets is
crucial. This infrastructure should champion the principles of open-source software, foster-
ing a culture of shared responsibility and continuous improvement. The concept of “living
datasets” emerges, emphasizing the dynamic nature of data [43; 44] and the importance of
metrics [45; 46] and rich, flexible metadata in ensuring its relevance. Exemplar activities
that continuously onboard input from contributors include, among others

e Croissant dataset format
https://github.com/mlcommons/croissant
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e Dynabench dynamic data collection and benchmarking platform
https://dynabench.org/

e Dataperf, metrics for data-centric algorithm benchmarks
https://www.dataperf.org/home [17]

Vibrant communities and innovative infrastructure will facilitate the future of machine
learning datasets that cater to large models and real-world efficacy. These datasets should
encapsulate the entire data lifecycle, ensuring they remain relevant and adaptable. They
must be amenable enough to support the evolving research questions in machine learning.
Furthermore, they should help address societal issues and allow analyses with respect rep-
resentation and biases [41; 47]. The integrity of data forms the bedrock of reliable machine
learning models. This involves addressing challenges related to noisy measurements, noisy
labels and uncertainty [48; 49]. Ensuring the quality of data used for ML training and
evaluation is paramount, as it directly influences the efficacy and reliability of the resulting
models. New datasets, also called data++ [50] by some, thus should increasingly support
the optimization of data itself [51-55] as part of the machine learning lifecycle. Ongoing
initiatives that amalgamate these ingredients comprise, among others

e Machine Learning Common’s datasets working group
https://mlcommons.org/en/groups/datasets/

e UN’s Al for Good SDG gateway
https://aiforgood.itu.int/gateway/

e Independent research collectives such as LAION or EleutherAl
https://laion.ai/, https://www.eleuther.ai/

e A diversity of open source benchmarking and evaluation repositories such as
https://github.com/erichson/SuperBench,
https://wilds.stanford.edu/ |56],
https://github.com/hendrycks/robustness|57],
https://github. com/basveeling/pcam |58,
https://mlcommons.org/en/dollar-street/ [59],
https://github.com/modestyachts/ImageNetV2 [60)],
https://github.com/inverse-scaling/prize |61]

Investing in public datasets offers a plethora of benefits. It has the potential to accelerate
innovation in the field of ML, reduce legal and ethical risks associated with data usage, and
address pressing societal challenges. The emphasis is on creating datasets that not only
advance the field of ML but also contribute positively to society at large by addressing real-
world problems. The DMLR community is already expansive and, even more importantly,
ongoing. We envision an ecosystem that strengthens these pillars and supports the growth
and funding of new ideas. Whether you are a researcher, a practitioner, or an enthusiast,
your insights and contributions to DMLR are the determinants of the data-centric machine
learning future.
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Continual learning without forgetting

With this editorial we aim to highlight critical developments in data-centric machine learn-
ing and provide an overview of entry points for contributions to different activities in the
extended community. In a dynamic system, a snapshot like this editorial will always contain
some approximation error. If you know of relevant resources that were omitted please do
not be shy and reach out. We will be happy to update them.
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Appendix A. The people behind the DMLR program at ICML 2023

Next to the organizers, speakers and attendees, the DMLR community is made up of its
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sity of Wisconsin-Madison), Stephen O Mussmann (University of Washington), Yinglun Zhu
(University of Wisconsin-Madison), Simon Du (University of Washington), Kevin Jamieson
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Daiki Chijiwa (NTT), Sekitoshi Kanai (NTT), Atsutoshi Kumagai (NTT Computer and
Data Science Laboratories), Hisashi Kashima (Kyoto University), Jiaheng Wei (UCSC),
Zhaowei Zhu (University of California, Tianyi Luo (Amazon), Ehsan Amid (Google Brain),
Abhishek Kumar (Google Brain), Muhammed T Razzak (University of Oxford), Anthony
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Ortiz (Microsoft), Caleb Robinson (Microsoft Al for Good Research Lab), Fangyi Chen
(Carnegie Mellon University), Han Zhang (CMU), Hao Chen (Carnegie Mellon University),
Kai Hu (Carnegie Mellon University), Jiachen Dou (Carnegie Mellon University), zaiwang
li (pitt), Chenchen Zhu (Meta), Marios Savvides (Carnegie Mellon University), A. Feder
Cooper (Cornell University), Wentao Guo (Cornell University), Duc Khiem Pham (Cornell
University), Tiancheng Yuan (Cornell University), Charlie F Ruan (Cornell University),
Yucheng Lu (Cornell University), Christopher De Sa (Cornell University), Rasool Fakoor
(AWS), Zachary Lipton (Carnegie Mellon University), Pratik A Chaudhari (University of
Pennsylvania), Alex J Smola (Amazon), Mark Vero (ETH Zurich), Mislav Balunovic (ETH
Zurich), Martin Vechev (ETH Zurich), Jinyi Liu (Tianjin University), Yi Ma (Tianjin Uni-
versity), Jianye Hao (Tianjin University), Yujing Hu (NetEase Fuxi AI Lab), Yan Zheng
(Tianjin University), Tangjie Lv (NetEase Fuxi AI Lab), Changjie Fan (NetEase Fuxi Al
Lab), Gregory Yauney (Cornell University), Emily Reif (Google), David Mimno (Cornell
University), Hailey Joren (UC San Diego), Chirag Nagpal (Carnegie Mellon University),
Katherine Heller (Google), Berk Ustun (UCSD), Alex Oesterling (Harvard University), Ji-
aqi Ma (University of Illinois Urbana-Champaign), Flavio Calmon (Harvard University),
Himabindu Lakkaraju (Harvard), Luisa B Shimabucoro (Universidade de Sao Paulo), Tim-
othy Hospedales (Edinburgh University), Henry Gouk (University of Edinburgh), Pratyush
Maini (IIT Delhi), Sachin Goyal (Carnegie Mellon University), Zico Kolter (Carnegie Mellon
University), Aditi Raghunathan (Carnegie Mellon University), Aaditya Naik (University of
Pennsylvania), Yinjun Wu (University of Pennsylvania), Mayur Naik (University of Penn-
sylvania), Eric Wong (University of Pennsylvania), Karthick Gunasekaran (Researcher),
Sang Keun Choe (Carnegie Mellon University), Sanket Vaibhav Mehta (Carnegie Mellon
University), Hwijeen Ahn (Carnegie Mellon University), Willie Neiswanger (Stanford Uni-
versity), Pengtao Xie (UC San Diego), Emma Strubell (Carnegie Mellon University), Eric
Xing (MBZUAI, CMU, and Petuum Inc.), Guozheng Ma (Tsinghua University), Linrui
Zhang (Tsinghua University), Haoyu Wang (Tsinghua University), Lu Li (Tsinghua Uni-
versity), Zilin Wang (Tsinghua University), Zhen Wang (The University of Sydney ), Li
Shen (JD Explore Academy), Xueqian Wang (Tsinghua University), Dacheng Tao (The
University of Sydney), Yi-Fan Zhang (NLPR, Xue Wang (Alibaba DAMO Academy), Weiqi
Chen (Alibaba Group), Zhang Zhang (Institute of Automation, Rong Jin (Twitter), Tieniu
Tan (NLPR, Jiachen T. Wang (Princeton University), Yuqing Zhu (UC Santa Barbara),
Yu-Xiang Wang (UC Santa Barbara), Prateek Mittal (Princeton University), Ching-Yun
Ko (MIT), Pin-Yu Chen (IBM Research), Payel Das (IBM Research), Yung-Sung Chuang
(MIT), Luca Daniel (Massachusetts Institute of Technology), Young In Kim (Purdue Uni-
versity), Pratiksha Agrawal (Purdue University), Johannes Royset (Naval Postgraduate
School), Rajiv Khanna (Purdue University), Megan Richards (Meta), Diane Bouchacourt
(Meta), Mark Ibrahim (Meta), Polina Kirichenko (New York University), Chiyuan Zhang
(MIT), Linus Ericsson (University of Edinburgh), Newsha Ardalani (Meta AI (FAIR)),
Mostafa Elhoushi (Meta), Carole-Jean Wu (Meta AI), Jacob Buckman (Mila), Kshitij Gupta
(Mila), Ethan Caballero (Mila), Rishabh Agarwal (Google Research, Brain Team), Marc
G. Bellemare (Google Brain), Avni Kothari (UC San Diego), Lily Weng (UCSD), Bogdan
Kulynych (EPFL), Yoav Wald (Johns Hopkins), Suchi Saria (Johns Hopkins University),
Hanyang Jiang (Georgia Institute of Technology), Yao Xie (Georgia Tech), Ellen Zegura
(Georgia Tech), Elizabeth Belding (University of California, Santa Barbara), Shaowu Yuchi
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(Georgia Institute of Technology), Kaize Ding (Arizona State University), Yancheng Wang
(Arizona State University), Huan Liu (Arizona State University), Jeyeon Eo (Soongsil Uni-
versity), Dongsu Lee (Soongsil University ), Minhae Kwon (Soongsil University), Thao T
Nguyen (University of Washington), Samir Gadre (Columbia University), Gabriel Ilharco
(University of Washington), Sewoong Oh (University of Washington), Kimia Hamidieh (Uni-
versity of Toronto, Vector Institute), Haoran Zhang (MIT), Thomas Hartvigsen (MIT),
Marzyeh Ghassemi (University of Toronto, Amro Abbas (Meta), Surya Ganguli (Stanford
University), Hidetomo Sakaino (Weathernews Inc.)

Appendix B. Full list of accepted papers
The full list of accepted papers is available at https://dmlr.ai/accepted/.
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Appendix C. Links to recorded talks and slides from DMLR

In random order:

Masashi Sugiyama
Coping with Wild Distribution Shifts: Continuous Shift, Joint Shift, and Beyond

https://slideslive.com/39006435/coping-with-wild-distribution-shifts-continuous-shift-joint-shift-and-beyond?ref=folder-122509

Ce Zhang
DMLR: Journal of Data-centric Machine Learning Research

https://slideslive.com/39006439/dmlr- journal-of-datacentric-machine-learning-research?ref=folder-122509

Dina Machuve
Data for Agriculture: Challenges and Opportunities in Fast Africa

https://slideslive.com/39006438/data-for-agriculture-challenges-and-opportunities-in-east-africa?ref=folder-122509

Peter Mattson
Data-centric Ecosystem: Croissant and Dataperf

https://slideslive.com/39006431/datacentric-ecosystem-croissant-and-dataperf?ref=folder-122509

Olga Russakovsky and Vikram Ramaswamy
Data-centric Machine Learning: Tackling social bias in computer vision datasets

https://slideslive.com/39006434/datacentric-machine-learning-tackling-social-bias-in-computer-vision-datasets?ref=folder-122509

Andrew Ng
Fast prompt-based ML development and data-centric Al

https://slideslive.com/39006430/fast-promptbased-ml-development-and-datacentric-ai?ref=folder-122509

Ludwig Schmidt, Megan Ansdell, Nathan Lambert, Sang Michael Xie, Praveen Paritosh,
Manil Maskey
Panel Discussion

https://slideslive.com/39006440/panel-discussion?ref=folder-122509

Mihaela van der Schaar
Reality-Centric AI

https://slideslive.com/39006433/realitycentric-ai?ref=folder-122509
Isabelle Guyon
Towards Data-Centric AutoML

https://slideslive.com/39006437/towards-datacentric-automl?ref=folder-122509
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